Converting OpenStreetMap geo data into railML® for a Railway Simulation Environment

Christian Rahmig, Andreas Richter
DLR Institute of Transportation Systems
Braunschweig, Germany
Overview

- Motivation
 - Railway driver’s cab simulation RailSET
 - OpenStreetMap (OSM)
- Approach
 - Defining OSM Layers
 - The OSM-4-Railway tool chain
 - The SimWorld tool chain
 - Adapting the SimWorld tool chain
- Implementation
- Summary
Motivation

Railway Driver‘s Cab Simulation RailSET*

Purpose:
Human Factors analyses for train drivers

Requires:
realistic 3D model of the railway line to be used for simulation (topology, geometry)

* RailSET = Railway Simulation Environment for Train Drivers and Operators
Motivation

Initial Situation

- Simulation in the RailSET laboratory is based on ZUSI
Motivation

Initial Situation

Simulation in the RailSET laboratory is based on ZUSI

Source: www.zusi.de
Motivation
Initial Situation – Problems

- The number of lines to be simulated within the RailSET laboratory environment is limited
- The generation of tracks/lines for simulation is expensive (time, students)
- Zusi does not consider the combination with existing real geo data, e.g. digital terrain models
- **Currently, it is not possible to model/visualize/simulate arbitrary lines in short term**

- **Goal:** to model, visualize and simulate arbitrary tracks within the RailSET laboratory environment
- **Task:** Concept and implementation of a process chain for simulation-based scenario and landscape generation using existing geo data sources
Motivation
OpenStreetMap

- OpenStreetMap (OSM) project was founded in 2004
- Goal: free world map

<table>
<thead>
<tr>
<th>#users</th>
<th>1,791,598</th>
</tr>
</thead>
<tbody>
<tr>
<td>#GPS points</td>
<td>4,208,062,937</td>
</tr>
<tr>
<td>#nodes</td>
<td>2,526,790,312</td>
</tr>
<tr>
<td>#ways</td>
<td>252,581,837</td>
</tr>
<tr>
<td>#GPX files 18.09.2014</td>
<td>200</td>
</tr>
<tr>
<td>Size Planet.osm</td>
<td>>498 GB (36 GB compressed)</td>
</tr>
</tbody>
</table>

Sources:
- OpenStreetMap stats report run at 2014-09-18 00:00:14 +0000;
 http://www.openstreetmap.org/stats/data_stats.html
- Planet.osm; http://wiki.openstreetmap.org/wiki/Planet.osm
Motivation
OSM Data Model

- OpenStreetMap (OSM) project was founded in 2004
- Goal: free world map
- Data model: „the simplest thing that could possibly work“ [1]

Motivation
OSM Data Model

- OpenStreetMap (OSM) project was founded in 2004
- Goal: free world map
- Data model: „the simplest thing that could possibly work“ [1]

TABLE I
The basic OSM data types and their attributes

<table>
<thead>
<tr>
<th>nodes</th>
<th>ways</th>
<th>relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>version</td>
<td>id</td>
</tr>
<tr>
<td>timestamp</td>
<td>timestamp</td>
<td>version</td>
</tr>
<tr>
<td>changeset ID</td>
<td>changeset ID</td>
<td>changeset ID</td>
</tr>
<tr>
<td>visible</td>
<td>visible</td>
<td>visible</td>
</tr>
<tr>
<td>latitude</td>
<td>{wayNodes}</td>
<td>{relationMembers}</td>
</tr>
<tr>
<td>longitude</td>
<td>+ tags</td>
<td>+ tags</td>
</tr>
<tr>
<td>tile</td>
<td>+ tags</td>
<td>+ tags</td>
</tr>
</tbody>
</table>

Motivation
OSM Railway Tag

railway data are not that exactly modelled like roads and streets

There are 470 different values for the tag „railway“ [4]

<table>
<thead>
<tr>
<th>abandoned</th>
<th>construction</th>
<th>disused</th>
<th>funicular</th>
</tr>
</thead>
<tbody>
<tr>
<td>light_rail</td>
<td>miniature</td>
<td>monorail</td>
<td>narrow_gauge</td>
</tr>
<tr>
<td>preserved</td>
<td>rail > 50 %</td>
<td>subway</td>
<td>tram</td>
</tr>
<tr>
<td>halt</td>
<td>station</td>
<td>tram_stop</td>
<td>buffer_stop</td>
</tr>
<tr>
<td>derail</td>
<td>crossing</td>
<td>level_crossing</td>
<td>turntable</td>
</tr>
</tbody>
</table>

Motivation

OSM Railway Tag

- Railway data are not that exactly modelled like roads and streets
- There are 470 different values for the tag „railway“ [2]

TABLE II

Commonly used values for the key ”railway”

<table>
<thead>
<tr>
<th>abandoned</th>
<th>construction</th>
<th>disused</th>
<th>funicular</th>
</tr>
</thead>
<tbody>
<tr>
<td>light_rail</td>
<td>miniature</td>
<td>monorail</td>
<td>narrow_gauge</td>
</tr>
<tr>
<td>preserved</td>
<td>rail</td>
<td>subway</td>
<td>tram</td>
</tr>
<tr>
<td>halt</td>
<td>station</td>
<td>tram_stop</td>
<td>buffer_stop</td>
</tr>
<tr>
<td>derail</td>
<td>cross</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Map-matching / routing: There is no clear topological and geometrical map representation.

- How to use these data e.g. for building a simulation environment?
Approach
OSM Layers

- Regarding the OSM data model there are only three „layers“:
 - **Nodes**
 - **Ways**
 - **Relations**

TABLE I
The basic OSM data types and their attributes

<table>
<thead>
<tr>
<th>nodes</th>
<th>ways</th>
<th>relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>id</td>
<td>id</td>
</tr>
<tr>
<td>version</td>
<td>version</td>
<td>version</td>
</tr>
<tr>
<td>timestamp</td>
<td>timestamp</td>
<td>timestamp</td>
</tr>
<tr>
<td>changeset ID</td>
<td>changeset ID</td>
<td>changeset ID</td>
</tr>
<tr>
<td>visible</td>
<td>visible</td>
<td>visible</td>
</tr>
<tr>
<td>latitude</td>
<td>{wayNodes}</td>
<td>{relationMembers}</td>
</tr>
<tr>
<td>longitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approach

OSM Layers

Regarding the OSM data model there are only three „layers“:

- Nodes
 - Coordinates Layer

- Ways
 - Referencing nodes

- Relations
 - Referencing nodes, ways and relations
Approach
New OSM Layers

We want to define topic-specific layers:

Nodes
- Coordinates Layer

Ways
- Referencing nodes

Relations
- Referencing nodes, ways and relations

Topology
Geometry
Approach
New OSM Layers

⇒ We want to define topic-specific layers:

- **Nodes**
 - Coordinates Layer
 - New topic-specific tags for the nodes

- **Ways**
 - Referencing nodes
 - New topic-specific layers with new tags for the ways and relations

- **Relations**
 - Referencing nodes, ways and relations
 - Topology
 - Geometry
Approach
Layer-specific OSM tags

Table 1: Keys for railway topology modelling

<table>
<thead>
<tr>
<th>node</th>
<th>way</th>
<th>relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>topologyName</td>
<td>topologyName</td>
<td>topologyName</td>
</tr>
<tr>
<td>dir</td>
<td>dir</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>length</td>
<td></td>
</tr>
</tbody>
</table>

micro topology
Approach

Layer-specific OSM tags

Table 1: Keys for railway topology modelling

<table>
<thead>
<tr>
<th>node</th>
<th>way</th>
<th>relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>topologyName</td>
<td>topologyName</td>
<td>topologyName</td>
</tr>
<tr>
<td></td>
<td>dir</td>
<td>type = “connection”</td>
</tr>
<tr>
<td></td>
<td>length</td>
<td>course</td>
</tr>
</tbody>
</table>

Table 2: Keys for railway geometry modelling

<table>
<thead>
<tr>
<th>node</th>
<th>way</th>
<th>relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometryName</td>
<td>geometryName</td>
<td>geometryName</td>
</tr>
<tr>
<td>pos</td>
<td>fromPos</td>
<td>type = “complexGeometry”</td>
</tr>
<tr>
<td></td>
<td>toPos</td>
<td></td>
</tr>
<tr>
<td>curvature</td>
<td>curvature</td>
<td></td>
</tr>
<tr>
<td>gradient</td>
<td>gradient</td>
<td></td>
</tr>
<tr>
<td>superelevation</td>
<td>superelevation</td>
<td></td>
</tr>
</tbody>
</table>

alignment
We define **38 tags** for the description of the railway track network as needed by most of the railway geodata applications.
Approach
The OSM-4-Railway Tool Chain

- **Topology Verification** …extract railway network and verify its topology (node edge model)
- **Railway Data Enhancement** …add layer-specific tags to the railway elements in the map
Approach
The OSM-4-Railway Tool Chain

Import (enhanced) railway relevant data from OSM export into geo data base
Approach
The OSM-4-Railway Tool Chain

- **Import** (enhanced) railway relevant data from OSM export into geo data base
- **Export** railway infrastructure data in exchange format railML version 2.2
Approach
The SimWorld Tool Chain

- adding new data sources (from partners)
- adding new targets (for partners or third party use)

- full reuse of tool chain possible
- additional data in driving simulation available
Approach
Adapting the SimWorld Tool Chain

- Use Vires Track Editor to create railway lines for the RailSET simulation
- The result of the Track Editor is a 3D model of the railway line, which is fused with the 3D landscape model in the Trian3D-Builder software.
Implementation
RailSET Simulation Laboratory Environment

- The RailSiTe/RailSET laboratory is being adapted from ZUSI to Vires

Source: www.vires.com

- Vires-based simulations are used already in the Automotive Department of the Institute
Implementation

- The railway line from Braunschweig to Gifhorn has been selected for testing the OSM-4-Railway tool chain implementation.
- Additionally, Vires built the railway reference line Braunschweig-Gifhorn within the AIM project for being used in the RailSET laboratory environment → can be used as reference.
Implementation

- Export OSM data
Implementation

- Run the OSM-4-Railway tool chain – Option 5
- Verify OSM topology
- Enhance data with OSM-DLR tags
- Import into Map database
- Export to railML 2.2
Implementation

- OSM-4-Railway tool chain: data verification and enhancement
Implementation

> Import railML file into simulation scenario editor
Implementation
Vires Track Editor

- The resulting railML infrastructure file is imported into the Vires Track Editor
- Purpose: create a 3D railway line model based on the given topology and geometry.
The result of the Track Editor is a 3D model of the railway line, which is fused with the 3D landscape model in the Trian3D-Builder software (connection with SimWorld tool chain).
Implementation

Result
Summary

- The current simulation environment of the railway driver’s cab laboratory RailSET is not able to include existing geo data from various sources.
- OpenStreetMap provides a free world map and an alternative to conventional geodata sources, which often lack of actuality or availability.
- The OSM data model is very simple defining only three basic data types: nodes, ways and relations; elements are parametrized by arbitrary tags, which are not sufficient for many applications, e.g. routing.
- **Layer approach**: we defined new topic-specific tags (layers), which enable OSM data usage providing track topology and track geometry; Many of the new tags can be calculated using existing OSM data.
- By adapting the **SimWorld tool chain**, spatial data from various sources can be fused for building an integrated model of the railway line.
- Future work will focus on the comparison of the OSM-based with the manual railway simulation landscape creation.
Thank you for your attention!

Christian Rahmig
E-mail: christian.rahmig@dlr.de
Phone: +49 531 295 3461

Andreas Richter
E-Mail: andreas.richter@dlr.de
Phone: +49 531 295 3408

German Aerospace Center
Institute of Transportation Systems
Braunschweig, Germany