

railML®: The use of interlocking data for engineering and for simulation

Dr. Bob Janssen; railML.org-IL-coordinator, Den Haag 26th railML conference · Paris, October 8th, 2014

All rights reserved.

Use Cases

Simulation

- Design timetables
- Test timetables
- Test scenarios

Engineering

- Unified data exchange
- Automated data input
- Humanless tool chain

Present engineering workflow

Future engineering workflow

Interlocking is all about relations

Level Crossing relations

pointRef

org

railML[®] > October 8th 2014 > Slide 9 26th railML conference Paris

How to model a signal plan

- → Attributes are signal aspects, speeds and *links to next signal*
- ➤ Model the signal plan as a linked list

RailML model of a signal plan

Conclusions

- → IS models topological relationships
- ✓ IL models interlocking relationships
- Route tables are best modelled as ordered sequences with required states.
- Interlocking relationships are modelled as associations between elements.
- → Searching routes through railML[®] is trivial.
- ✓ Visual representation of railML[®] IL is needed.

